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We study the impact of strain localization on the stability of frictional slipping in dense amorphous mate-
rials. We model the material using shear transformation zone �STZ� theory, a continuum approximation for
plastic deformation in amorphous solids. In the STZ model, the internal state is quantified by an effective
disorder temperature, and the effective temperature dynamics capture the spontaneous localization of strain. We
study the effect of strain localization on stick-slip instabilities by coupling the STZ model to a noninertial
spring slider system. We perform a linear stability analysis to generate a phase diagram that connects the small
scale physics of strain localization to the macroscopic stability of sliding. Our calculations determine the values
of spring stiffness and driving velocity where steady sliding becomes unstable and we confirm our results
through numerical integration. We investigate both homogeneous deformation, where no shear band forms, and
localized deformation, where a narrow shear band spontaneously forms and accommodates all of the defor-
mation. Our results show that at a given velocity, strain localization leads to unstable frictional sliding at a
much larger spring stiffness compared to homogeneous deformation, and that localized deformation cannot be
approximated by a homogeneous model with a narrower material. We also find that strain localization provides
a physical mechanism for irregular stick-slip cycles in certain parameter ranges. Our results quantitatively
connect the internal physics of deformation in amorphous materials to the larger scale frictional dynamics of
stick-slip.
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I. INTRODUCTION

Dense amorphous materials include a wide range of sys-
tems, including granular materials, glassy materials, colloids,
emulsions, and possibly even biological tissue. These mate-
rials often serve as lubricants for sheared interfaces, ranging
in scale from atomically thin films to earthquake faults.
While they differ vastly in scale, each is made up of a col-
lection of smaller particles—the thin film contains a few lay-
ers of molecules, while the earthquake fault is filled with
crushed grains of rock. Both the interfacial material and the
large scale system as a whole can exhibit rich and complex
dynamics. Most studies of these systems focus on the small
scale physics in the material or the large scale dynamics of
friction. In this paper, we bridge the two approaches using a
constitutive law derived from small scale physics to investi-
gate instabilities in both the deformation in the interfacial
layer and the macroscopic friction.

Laboratory experiments show that granular materials �1�,
fault rocks �2–4�, and thin films �5–8� exhibit similar fric-
tional dynamics, including a yield stress, hysteresis, rate de-
pendent frictional resistance, and stick-slip. In this study, we
focus on stick-slip instabilities, which are responsible for
earthquake slip on seismic faults, noise from automobile
brakes and tires, music from a violin, and excessive wear on
frictional interfaces in machinery. Modeling the dynamics of
friction in these materials is a challenging problem, as mod-
els must resolve the microscopic physics of deformation and
simultaneously remain tractable for capturing the large scale
behavior.

Experimental observations of friction are sometimes di-
rectly incorporated into phenomenological friction laws,
such as the Stribeck curve �9� and the Dieterich-Ruina rate
and state depenendent friction laws �10,11�. These fits to data
capture many important features of experiments, but to date
have not been derived from microscopic physics and do not
resolve internal dynamic instabilities within the interfacial
layer. Molecular dynamics simulations have provided exten-
sive information about microscopic deformation and flow,
but only for limited numbers of particles and a narrow range
of time scales. Stick-slip motion has been explored in the
context of constitutive models �12–15� and molecular dy-
namics simulations �16,17�.

In this paper, we use a physics-based constitutive model
that combines insights from atomistic simulations with the
tractability of a constitutive law to connect macroscopic fric-
tion dynamics to the small scale physics of deformation. Our
friction model is based on the theory of shear transformation
zones �STZs� �18,19�. This continuum approach incoporates
features from molecular dynamics simulations and funda-
mental constraints from nonequilibrium statistical physics
and has been applied to a wide variety of materials
�15,20,21�. The STZ constitutive model provides physical
insight into plastic deformation, but is tractable for studying
larger scale sheared interfaces. Additionally, STZ theory has
sufficient resolution of the microscopic scale to capture shear
band instabilities and the spontaneous localization of strain
�22–24�. When a shear band forms, deformation localizes to
a region that is much narrower than the thickness of the
material. Localization plays an important role in the fric-
tional properties of bulk metallic glasses �25�, granular ma-
terials �26�, and bubble rafts �27�.

In this study, we determine the effect of the microscopic
physics of strain localization on the dynamics of stick-slip.*edaub@lanl.gov
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We perform a linear stability analysis with the STZ equations
to quantitatively determine how small scale localization im-
pacts the large scale frictional behavior. We compare local-
ized strain, where a shear band dynamically forms, to homo-
geneous deformation, where no shear band forms and the
strain rate is spatially uniform across the interfacial layer. We
find that localization alters the parameter range where stick-
slip occurs, thus demonstrating that the small scale physics
plays an important role in the large scale dynamics of fric-
tion.

We begin with a discussion of the physics behind the STZ
model and the block slider equations in Section II. In Sec.
III, we present the results of our stability analysis and our
numerical studies with the STZ model. Section IV concludes
with a discussion of the implications of our work for friction
and deformation in amorphous materials.

II. MODEL EQUATIONS

A. STZ constitutive law

We model the constitutive response of the interfacial ma-
terial with STZ theory. STZ theory is a continuum approxi-
mation for amorphous solids under shear. It was originally
developed to model deformation and fracture in a Lennard-
Jones glass �18,19�, but has also been applied to boundary
lubrication �15�, granular flow �28�, and dynamic earthquake
rupture �21�. Recently it has been shown that STZ theory
captures the dynamic instability that leads to the formation of
shear bands in glassy materials �22,24� and in dynamic earth-
quake rupture �23�. In this section, we discuss the physics
behind the STZ model and present the basic equations. A
detailed derivation of the STZ equations is presented in Ap-
pendix A for completeness.

We consider a spring slider with negligible mass �i.e.,
overdamped�. The spring is pulled at a constant velocity V0.
The slider is illustrated on the left in Fig. 1. The sheared
interface is filled with an amorphous material. The material
has a finite thickness of 2w in the z direction, and is much
larger and translationally invariant in the other spatial direc-
tions, reducing the spatial dependence to z only. We also
assume that the material is symmetric about z=0, and there-

fore we only model the material for 0�z�w. A close up of
the amorphous material �center in Fig. 1� shows that the
shear strain can be heterogeneous within the material layer.

In STZ theory, when a collection of particles is sheared,
the resulting particle displacements can be written as the sum
of two components: affine displacements, where the particle
motion is uniform throughout the material, and nonaffine dis-
placements, where the particle motion is heterogeneous. Af-
fine displacements result in an elastic material response,
while nonaffine displacements can produce plastic deforma-
tion. Nonaffine deformation can contribute to the elastic re-
sponse, but STZ theory makes the simplifying assumption
that the nonaffine deformation is purely plastic.

In simulations and experiments with dense amorphous
materials, nonaffine deformation tends to occur in localized
regions as particles rearrange from one metastable orienta-
tion to another �18,19�. These zones are referred to as STZs.
An STZ switching between the two orientations is shown at
the right in Fig. 1. STZ theory assumes that all nonaffine
deformation occurs in these zones. Each switch accumulates
a fixed strain increment and a mimimum shear stress must be
applied for the switch to occur. Once an STZ has switched in
the direction of applied shear, it cannot accumulate further
plastic strain in that direction. Therefore, to allow the mate-
rial to accumulate further plastic strain, STZs are created and
destroyed as the material is sheared and energy is dissipated.
Once STZs flip in the direction of applied shear, they are
destroyed, and STZs must be created in the opposite orien-
tation to maintain steady plastic deformation.

The plastic strain rate �̇ depends on two factors: the num-
ber of STZs, and the rate at which STZs switch between
orientations. The shear stress � determines the rate at which
STZs change orientation, and the total number of STZs is
governed by an effective disorder temperature � �29�. These
factors are summarized by the following equation:

�̇ =
1

t0
f���exp�− 1/�� . �1�

This equation shows that the plastic strain rate depends on
the shear stress through the function f���, and the effective
temperature through the Boltzmann factor exp�−1 /��. Also
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FIG. 1. �Color online� Illustration of the spring slider modeled with STZ theory. �Left� A block of negligible mass is pulled by a spring
of stiffness k at constant velocity V0. An amorphous material lubricates the sheared interface. �Center� A close up of the amorphous material
indicates that we resolve the dynamic evolution of strain inside the material. In STZ theory, the microscopic physics is captured through the
evolution of an effective temperature, which is heterogeneous within the material. Our model accounts for the effect of strain localization on
the motion of the block. �Right� Close up of an STZ reversal at the particle scale. As the material is sheared, an ellipse has drawn through
the particles switches from one orientation to the other. The dark particles on the right indicate where plastic deformation has occurred in the
material. STZ image taken from Falk and Langer �18�.
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included in Eq. �1� is the characteristic time for STZ rever-
sals t0, an important time scale in the problem. We adopt an
exponential form for f���, which is discussed in the full deri-
vation of the STZ equations in Appendix A.

The effective disorder temperature evolves dynamically
as the material is driven away from equilibrium. The govern-
ing partial differential equation that we adopt for the effec-
tive temperature is

�̇ =
�̇�

c0�y
�1 −

�

�̂��̇�
� +

�

�z
�D�̇

��

�z
� . �2�

The effective temperature evolution equation includes terms
for energy dissipation and diffusion. The dissipation term
indicates that as plastic work is done on the system, the
particles are stirred. This drives the effective temperature to-
ward its steady-state value �̂��̇�, which is a function of the
plastic strain rate. Diffusion of effective temperature is ob-
served in simulations �30�, and occurs with a time scale
given by the inverse strain rate and a length scale �D. The
diffusion length is determined by the particles in the amor-
phous material—this length might scale with a characteristic
particle diameter in a granular material, or a typical interpar-
ticle separation in a glass. Note that because the time scale
for diffusion is the inverse plastic strain rate, diffusion of
effective temperature occurs only when the material is
sheared.

The steady-state effective temperature �̂��̇� is given by
�20�

�̂��̇� =
�w

log� q0

t0�̇
� . �3�

This form for �̂��̇� is based on simulations of a glass by
Haxton and Liu �31�. Parameters include the effective tem-
perature activation barrier �w and the nondimensional strain
rate where STZ theory breaks down q0. For strain rates larger
than �̇=q0 / t0, the effective temperature diverges and plastic
deformation no longer occurs as localized STZs. The effec-
tive temperature activation barrier �w is a very important
parameter, as it determines the frictional rate dependence. If
�w�1, then the material is rate strengthening, which means
that the steady-state shear stress increases with the strain
rate. If �w�1, then the material is rate weakening, and as the
strain rate increases, the steady-state shear stress decreases.

We also need boundary conditions on the effective tem-
perature at the material edges. We assume that there is no
effective temperature flux out of the boundaries of the amor-
phous material, so �� /�z=0 at z= 	w.

The STZ equations capture the spontaneous localization
of strain in amorphous materials. Localization occurs be-
cause of an instability in the effective temperature dynamics.
If the effective temperature is a priori spatially homoge-
neous, then by symmetry all subsequent deformation is ho-
mogeneous. The diffusion term in Eq. �2� is zero and the
effective temperature evolves in time but does not vary in
space. This produces homogeneous deformation, i.e., the
strain rate is uniform across the amorphous material �z direc-
tion�. If the effective temperature is homogeneous, the STZ

equations produce a logarithmic frictional rate dependence
that matches the rate dependence of the laboratory derived
Dieterich-Ruina friction laws that are frequently used in seis-
mology �21�.

However, a perfectly uniform effective temperature is not
physically realistic. If there is any heterogeneity in the effec-
tive temperature, then some spatial regions have more STZs,
and therefore a larger strain rate. The energy dissipation term
in Eq. �2� is proportional to the strain rate and the effective
temperature grows more quickly in regions where the effec-
tive temperature is larger. This instability amplifies small in-
homogeneities and the end result of heterogeneous initial
conditions is deformation in a single narrow shear band.

Although truly homogeneous deformation is not a physi-
cally realistic scenario, in many cases it is a reasonable ap-
proximation and therefore provides a natural comparison
with deformation in a localized shear band. If the material is
very thin, the shear band that forms may be wider than the
material. For example, boundary lubrication experiments are
often done with thin films that are only a few molecules
thick. In this case, homogeneous deformation serves as a
good approximation because the effective temperature varies
over a length scale that is larger than the material thickness.
We analyze both the homogeneous approximation and the
full STZ equations with localization in our study to deter-
mine the role of the physics of strain localization on fric-
tional sliding.

B. Block slider equations

To explore the implications of microscopic strain localiza-
tion on macroscopic friction, we couple the STZ equations
�Eqs. �1� and �2�� to a spring slider. A block is attached to a
spring pulled at a constant rate, and the block motion causes
shear deformation in the amorphous material �left in Fig. 1�.
For simplicity we ignore inertial effects. Experimental data
often exhibits stick-slip motion in overdamped regimes �32�,
where the block oscillation time is much smaller than the
duration of a stick-slip event. In this regime the frictional
time scales are more important for the block dynamics than
intertial effects. Because we are in an overdamped regime,
the friction force balances the spring force. Therefore, we
only require a dynamic equation for the frictional shear stress
� in the amorphous material to complete the system of equa-
tions describing the STZ block slider model. Here � is taken
to be constant in the z direction. This follows from our as-
sumption that the stress equilibration time scale is much
faster than the time scales in the STZ friction law; the static
solution to the momentum conservation equations in this ge-
ometry is a spatially uniform shear stress.

Stress in the material evolves due to elastic and plastic
deformation. The spring of stiffness k is pulled at a constant
rate V0, which increases the shear stress by extending the
spring. Meanwhile, plastic deformation occurs in the amor-
phous solid and causes the material to soften. Therefore, the
shear stress � evolves according to

�̇ = k�V0 − �
0

w

�̇dz� . �4�

Here, dots represent a time derivative. The first term on the
right-hand side represents elastic loading from the spring and
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the second term represents material softening at a rate deter-
mined by the spatial integral of the plastic strain rate �̇. Be-
cause the system is overdamped, the spatial integral of the
plastic strain rate over the entire material width is also the
velocity of the slider block. The plastic strain rate is given by
the STZ equation �Eq. �1�� and is a function of the stress and
the effective temperature.

C. Time scales

The block slider equation �Eq. �4��, along with the STZ
equations �Eqs. �1� and �2��, involve a number of different
time scales. The fastest among these is the STZ rearrange-
ment time t0. An estimate for t0 is a molecular vibrational
time scale for a glassy material or a characteristic particle
diameter divided by the speed of sound in a granular mate-
rial. These time scales are much faster than all others in the
problem, and rearrangements are taken to be instantaneous in
the STZ model.

The time scale for stress equilibration in the material is of
the order of the thickness of the layer divided by the speed of
sound. Note that since the layer contains many particles, this
is certainly much slower than an individual STZ rearrange-
ment. This time scale is also taken to be instantaneous in the
model, which is implicit in Eq. �4�. For the theory to be
applicable, all other processes must be slower than stress
equilibration.

The time scale for effective temperature evolution is the
inverse plastic strain rate. This describes both energy dissi-
pation and diffusion and it must be slower than the stress
equilibration time. Large strain rates tend to occur for large
driving rates V0, and also for stick-slip motion when the
spring is very compliant. This restricts the range of driving
rates as we numerically integrate the equations.

Because we assume that the slider is overdamped, we
ignore the inertia of the block. This amounts to taking the
time scale for oscillations of the spring slider to be much
faster than the inverse plastic strain rate. The duration of a
stick-slip event is thus much longer than the natural oscilla-
tion period of the unencumbered block and spring, which
means that the frictional time scale dictates the dynamics of
stick slip. Stick slip can also occur in an underdamped re-
gime with a larger block mass, but we do not consider that
limit in our analysis.

D. Nondimensional equations

We nondimensionalize the equations using the following
parameters: scale all times by the STZ rearrangement time t0,
scale all lengths by the material width w, and scale all
stresses by the STZ yield stress �y. The parameters can thus
be redefined as follows: stress ��=� /�y, strain rate �̇�= t0�̇,
driving rate V0�=V0t0 /w, STZ activation stress 
d�=
d /�y,
diffusion length scale D�=D /w2, and spring constant k�
=kw /�y. The nondimensional equations are �dropping all
primes on variables�

�̇ = k�V0 − �
0

1

�̇dz� , �5�

�̇ =
�̇�

c0
�1 −

�

�̂��̇�
� +

�

�z
�D�̇

��

�z
� . �6�

where �̂��̇�=�w / log�q0 / �̇� and �̇= f���exp�−1 /��. The stress
factor is given by f���=2� exp�−f0�cosh�� /
d��1−1 /��.

The nondimensional parameters that we use in numerical
integration of the block slider model are given in Table I. We
keep all parameters constant except the driving rate and
spring stiffness, which we vary to explore the parameter
ranges that lead to stick-slip motion.

E. Small scale effects on friction in STZ theory

In STZ theory, the dynamics of friction is controlled by
the evolution of the effective temperature. The effective tem-
perature is derived from the underlying statistical physics of
dense, disordered solids and STZ theory connects macro-
scopic frictional behavior to the evolution of the effective
temperature. This includes resolving the spontaneous local-
ization of strain. Other friction laws that do not resolve the
internal dynamics of the interfacial material are a priori in-
capable of resolving the dynamical shear band instability.

Manning et al. �24� showed that a key parameter that
connects the microscopic physics to the macroscopic dynam-
ics in STZ theory is the effective temperature activation bar-
rier �w. Manning et al. performed a linear stability analysis
of the STZ equations and showed that �w determined the
stability of deformation with a spatially uniform effective
temperature. If this activation barrier is less than unity, ho-
mogeneous deformation is linearly unstable ��w�1�. This is
precisely the condition for rate weakening friction. Rate
weakening refers to the strain rate dependence of the steady-
state shear stress—as the strain rate increases, the steady-
state stress decreases. Therefore, rate weakening materials
always form shear bands given any heterogeneity in the ini-
tial effective temperature, as steady sliding is linearly un-
stable. If the activation barrier is less than unity, then steady
sliding is stable. This corresponds to the parameter range for
rate strengthening friction, where the shear stress increases
as the strain rate increases. However, shear bands can still
form if �w�1 due to transient effects �22,24�.

TABLE I. Dimensionless parameters for the block slider
equations.

Parameter Description

�=10 Strain accumulated per STZ reversal


d=1 STZ activation stress

f0=11.5 STZ activation energy

c0=1 Effective temperature specific heat

D=0.1
Squared effective temperature diffusion

length scale

�w=0.8 Effective temperature activation energy

q0=1 Strain rate at which STZ theory breaks down

V0=varies Driving rate

k=varies spring constant
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Although shear bands form for both rate weakening and
rate strengthening materials, we focus on rate weakening ma-
terials in this study. Previous studies with Dieterich-Ruina
friction �12� and STZ theory without strain localization �15�
showed that rate weakening is required for steady sliding to
be unstable in a single degree of freedom elastic system.
When shear band formation is included, we also find that
steady sliding is unstable only if friction is rate weakening,
which we show in the next section.

III. STICK-SLIP DYNAMICS

In this section, we explore the dynamics of the block
slider model with STZ theory. We investigate the effects of
shear band formation on the stability of frictional sliding and
generate a phase diagram that distiniguishes between param-
eters that produce stick-slip versus steady sliding with and
without shear bands. We also identify more exotic stick-slip
cycles and connect the underlying microscopic physics to the
observed complex dynamics. This involves both analytical
and numerical studies with the STZ equations.

For fixed material parameters, the type of motion depends
on the driving rate �the speed at which the spring is loaded�
and the stiffness of the spring. If we fix the spring stiffness,
large driving velocities result in steady sliding of the block.
The slider moves at the same velocity as the load point �the
end of the spring that is pulled at a constant velocity� and the
shear stress is at its steady-state value. At slower driving
rates, the block undergoes repeated stick-slip cycles. If we
instead fix the driving velocity, stiff springs produce steady
sliding and compliant springs produce stick-slip. The spring
stiffness and the driving rate are both important for determin-
ing the slider dynamics, as observed in experiments �33�.

In laboratory experiments, the transition from steady slid-
ing to stick-slip is usually investigated by fixing the spring
stiffness and varying the driving velocity, as it is much easier
to change the driving velocity in an experiment. In STZ
theory, it is more straightforward to calculate the stiffness at
which sliding becomes unstable as a function of velocity,
because the velocity as a function of stiffness cannot be ob-
tained in closed form. This is due to the nonlinear depen-
dence of the stress and effective temperature on the driving
rate. Ultimately, both approaches are equivalent as each de-
termines the boundary in �V0 ,k� space separating stick-slip
and steady sliding. Because we solve for the stiffness as a
function of velocity, we refer to the spring stiffness where the
motion transitions from stable sliding to stick-slip as the
critical stiffness kcrit�V0�. Our analytical results focus on de-
termining the critical stiffness as a function of the STZ pa-
rameters, allowing us to connect stick-slip to the microscopic
physics of deformation.

An example of stick-slip with the STZ law is illustrated in
Fig. 2, which shows shear stress as a function of the slider
velocity for one cycle of the motion. The slider velocity is
plotted on a logarithmic scale. The vertical line indicates the
velocity at which the spring is pulled V0. At the left, the
velocity is much smaller than the driving velocity V0 and the
slider “sticks” �i.e., creeps at a small velocity�. As the spring
is loaded, the shear stress increases until the spring over-

comes the frictional resistance. The block begins to slip
much more rapidly than the rate at which the spring is
pulled. The shear stress drops, and the block overshoots the
load point, which causes it to stick again and the cycle re-
peats.

Stick-slip motion occurs when steady frictional sliding is
unstable, as shown in Fig. 3. The plot shows the frictional
stress as a function of the load point displacement. The slider
begins sliding steadily, but the block motion transitions to
repeated stick-slip cycles. The inset in Fig. 3�b� shows that
stick-slip motion involves elastic loading by the spring over
a large load point displacement during the stick phase. The
stress drops very rapidly during the “slip” phase, indicating a
large slider velocity.

A. Analytical results

Stick-slip instabilities occur when the steady sliding solu-
tion to the block slider equations becomes unstable to pertur-
bations. The system of equations describing the block motion
is

�̇ = k�V0 − f����
0

1

exp�− 1/��dz� , �7�

�̇ =
f���exp�− 1/���

c0
	1 −

�

�̂��̇�
 + Df���
�

�z
	exp�− 1/��

��

�z

 .

�8�

These are the same equations as Eqs. �5� and �6�, with the
strain rate written out explicitly in terms of the stress and
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FIG. 2. �Color online� Stress and slider velocity evolution dur-
ing periodic stick-slip motion with the STZ law. Instead of sliding
steadily, which would be a single point on this diagram, the block
cycles through successive stick and slip cycles. The x on the dia-
gram indicates the steady sliding solution. At the far left, the block
is moving much slower than the rate at which the spring is pulled
�the vertical line�, and the shear stress increases as the spring is
extended. At the top, the spring force is large enough to initiate slip
and the block slips rapidly relative to V0. The block overshoots the
load point and the spring stops the block at the bottom of the loop.
The cycle repeats as the stress build up again during the stick phase.
Note that the slider velocity is not zero during a stick cycle—the
block creeps much slower than the rate at which the spring is
pulled, but never truly stops.
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effective temperature. We analytically determine the critical
stiffness using a linear stability analysis of the STZ equa-
tions. In Sec. III B, we confirm the results by numerically
integrating the block slider model.

Linear stability analysis determines if perturbations to the
stress and effective temperature grow or decay in time.
Mathematically, this involves finding the real part of the ei-
genvalues of the Jacobian. Negative real parts imply pertur-
bations to the stress and effective temperature decay expo-
nentially in time and steady sliding is stable. Positive real
parts imply steady sliding is unstable, and perturbations to
the stress and effective temperature grow exponentially in
time.

The analysis is straightforward, though the intermediate
expressions in the calculation are fairly complicated. We cal-
culate stability criteria for homogeneous deformation, where
the strain rate is uniform throughout the material, and for
localized deformation, where the strain rate is determined by
the dynamic evolution of the effective temperature. The de-
tails of the stability analysis are presented in Appendix B.

If deformation is homogeneous throughout the interfacial
material, steady sliding is unstable if the following criteria is
met,

−
kV0f����

f���
+

V0�

c0�̂
� 1

�w
− 1� � 0. �9�

This expression is derived in Appendix B. For localized de-
formation, we examine the stability of deformation with a
steady shear band, which is an approximate steady sliding
solution to the block slider equations. This replaces the ho-
mogeneous solution when internal degrees of freedom of the

interfacial material are resolved. In the localized case, the
instability criteria is

−
kV0f����

f���
+

�̇�

c0�̂
� 1

�w
− 1� − 2D

�̇

�3� ��

�z
�2

� 0. �10�

For the derivation of this result, see Appendix B.
For both homogeneous and localized deformation, the sta-

bility criteria �Eqs. �9� and �10�� depend on several different
terms. In both expressions, the first term comes from the
spring force, which is always less than zero and is therefore
always stabilizing. This term is identical for the two cases.
The second term in both expressions results from energy
dissipation in the amorphous material. This term can be
greater than zero, and thus can be destabilizing. Note that for
homogeneous deformation, the dissipation term is propor-
tional to the driving rate V0, while for localized deformation,
it is proportional to the plastic strain rate �̇. The strain rate in
a shear band is larger than the overall driving rate, so local-
ization makes energy dissipation more destabilizing. For lo-
calized deformation, the third term comes from diffusion.
This term is always negative, and thus stabilizes steady slid-
ing. The increase in the energy dissipation term is the larger
effect, implying that localization results in stick-slip motion
over a larger range of parameters. The stability criteria con-
nect the microscopic physics of the effective temperature
�the energy dissipation and diffusion terms� to the macro-
scopic frictional behavior �the stress term�.

The critical stiffness is the stiffness at which the terms
exactly cancel. For the homogeneous case this is simply

kcrit,h�V0� =
f�����V0�

f����c0�̂�V0�
� 1

�w
− 1� . �11�

To determine the critical stiffness for localized deformation,
we must quantitatively determine the effect of localization
�i.e., determine the strain rate and effective temperature in
the shear band�. We cannot do this analytically, as the effec-
tive temperature governing equation is highly nonlinear. We
instead estimate it by assuming that to a first approximation,
the strain rate is constant inside a shear band of thickness a
and negligible outside the shear band. This means that the
strain rate in the shear band is V0 /a and the effective tem-
perature inside the shear band is �̂�V0 /a�. We also must es-
timate �� /�z to quantify the effect of diffusion. Because the
strain rate is negligible outside the shear band, �̂ is not de-
fined, so we instead use the value of the effective tempera-
ture with driving rate V0, �̂�V0�. Therefore, if we have an
estimate of the shear band thickness a, we can easily calcu-
late �̇=V0 /a, �̂�V0 /a�, and �� /�z= ��̂�V0 /a�− �̂�V0�� /a, and
use these values to estimate the critical stiffness.

We estimate the shear band thickness a by assuming that
dissipation and diffusion roughly balance in the shear band.
Equating these terms gives

�̇�

c0
� D�̇

�

a2 . �12�

The strain rate divides out, and solving for a yields
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FIG. 3. �Color online� Shear stress as a function of load point
displacement for stick-slip motion. The load point displacement re-
fers to the displacement of the end of the spring that is pulled at a
constant rate. �a� The block starts out sliding steadily, but steady
sliding is unstable and the motion evolves into stick-slip cycles. �b�
The inset shows a close up of stable, periodic stick-slip cycle,
shown in Fig. 2, contained in the gray box of the main figure. The
stress increases during the stick phase due to the elastic loading of
the spring, while the rapid slip of the block suddenly drops the
stress during the slip phase.
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a ��Dc0�

�
. �13�

This expression shows that a scales with the diffusion length
�D, but also depends on the stress, the effective temperature,
and the effective temperature specific heat. Therefore, given
the driving rate, we determine the steady-state shear stress
and effective temperature, and use these values to predict a.

Tests of Eq. �13� through numerical integration show that
the scaling for each of the parameters is correct. However,
direct use of Eq. �13� underestimates a. This is because the
energy dissipation term is smaller than the estimate of �̇� /c0,
as � is not completely negligible compared to �̂. A better
estimate can be obtained by numerically integrating the STZ
equations once to determine a constant of proportionality. We
use the half width of the shear band at half the maximum
strain rate as our estimate of a. This criterion predicts that
the shear band thickness is about 3.7 times larger than in Eq.
�13� for the parameters in Table I. The value of the critical
stiffness is not very sensitive to this proportionality factor. If
the factor is changed to 3 or 4.5, the critical stiffness de-
creases by about 10% in both cases. Both cases result in a
decreased critical stiffness because there are two competing
localization effects, dissipation, and diffusion. Increasing the
proportionality factor changes the dissipation effect more
than the diffusion effect, and decreasing the proportionality
factor changes the diffusion effect more than the dissipation
effect.

Therefore, the shear band thickness for the parameters in
our simulations is

a = 3.7�Dc0�̂�V0�
�

, �14�

and the critical stiffness for localized deformation is

kcrit,l�V0� =
f�����V0�

af����c0�̂�V0/a�
� 1

�w
− 1�

−
2Df�����̂�V0/a� − �̂�V0��2

�a�̂�V0/a��3f����
. �15�

Equations �11� and �15� determine the boundaries for ho-
mogeneous and localized deformation in �k ,V0� space sepa-
rating stick-slip and steady sliding. Above kcrit, steady sliding
is stable, and below kcrit, stick-slip occurs. The expression
for localized deformation differs from the homogeneous ex-
pression due to the diffusion term and the larger dissipation
term. These changes have competing effects—diffusion sta-
bilizes steady sliding, while dissipation promotes unstable
sliding. The increase in the energy dissipation term has a
larger effect and the critical stiffness is larger for localized
shear than for homogeneous deformation. In both cases, rate
weakening is required for steady sliding to be unstable �if
�w�1, then the critical stiffness would have to be negative,
which is unphysical�. The function f��� is determined by the
stress dependence of the rate switching factor. In the case of
exponential stress dependence, f��� / f�����
d, and the criti-
cal stiffness is proportional to the steady sliding stress and
inversely proportional to the effective temperature. Note that

the stress and effective temperature are both functions of the
driving velocity V0, which means that the critical stiffness
depends on V0 for both types of deformation. The stress de-
creases with increasing driving rate �since friction is rate
weakening�, and the effective temperature increases with the
driving rate. This means that as the driving rate increases, the
critical stiffness decreases, which is consistent with experi-
ments �33�. This rate dependence is not captured by
Dieterich-Ruina friction, which predicts that the critical stiff-
ness is independent of the driving rate.

An important implication of our analysis is that localized
deformation cannot be approximated by homogeneous defor-
mation with a reduced material thickness. This is because the
diffusion term in Eq. �15� reduces the critical stiffness, an
effect that the homogeneous model cannot incorporate. It is
necessary to resolve the internal material instabilities in or-
der to produce the correct macroscopic behavior.

B. Numerical results

We confirm our analytic predictions for the dependence of
the critical stiffness on the driving rate through numerical
integration of the STZ equations. We perform numerical
simulations to ensure that our estimate for the shear band
thickness is accurate and to explore the connection between
the internal disorder characterized by the effective tempera-
ture and irregular stick-slip dynamics.

We integrate Eqs. �7� and �8� along with the constitutive
law �Eq. �1��. We first turn the partial differential equation
into a system of ordinary differential equations. We approxi-
mate the spatial derivatives using central second-order finite
differences, with the diffusion term is split into two separate
terms using the product rule. We write the spatial integral in
Eq. �7� as a numerical integral using the trapezoidal method.
Once the STZ equations are written as a system of ordinary
differential equations, we use a second order linearly implicit
trapezoidal method to advance the system in time. Because
stick-slip events involve longer periods of elastic loading
followed by rapid failure, we use an adaptive time stepping
method to efficiently resolve the slider motion.

We vary the scaled driving rate from V0=10−12 to 10−4,
and vary the scaled spring stiffness at each velocity to find
where the transition from steady sliding to stick-slip occurs.
The other parameters are given in Table I. For each set of V0
and k, we start the block at steady sliding. If the stress and
slider velocity do not remain constant, then steady sliding is
unstable. Figure 3�a� illustrates an example of the stress evo-
lution when steady sliding is unstable—the shear stress be-
gins to oscillate, and the oscillations grow into stick-slip
cycles.

We compare slider motion in cases involving dynamic
formation of a shear band with deformation that is homoge-
neous. To obtain homogeneous deformation, we start the sys-
tem with a spatially homogeneous effective temperature. In
contrast, to form a shear band, a small perturbation of the
form �� sech�z /�z� is added to the initial effective tempera-
ture. We find that the values of �� and �z do not influence
the limit cycle of stick-slip motion nor the final width or
amplitude of the shear band. For simplicity, we use values of
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��=10−4 and �z=0.1 for all of our localized simulations.
Figure 4 shows the phase diagram in �V0 ,k� space that

result from our analytical and numerical studies. As ex-
pected, the critical stiffness decreases with the driving rate,
and the critical stiffness for localized deformation is larger
than that for homogeneous shear. The analytical expression
for the critical stiffness with homogeneous shear matches
extremely well with the numerical results. For localized de-
formation, our analysis yields a curve that is slightly below
the curve obtained numerically. This discrepancy is due to
the approximations we used to estimate the shear band width
and the magnitude of the diffusion term. Changing the value
of the correction factor in the prediction of the shear band
thickness a �Eq. �14�� does not improve the analytical pre-
dictions. If the value of this factor is changed from 3.7 to 3
or 4.5, the prediction of the critical stiffness decreases by
10% in both cases. As mentioned above, the critical stiffness
decreases as the correction factor is either increased or de-
creased due to the competing effects of dissipation and dif-
fusion.

Our numerical results also indicate that the transition from
steady sliding to stick-slip is continuous. As the stiffness is
increased toward the critical stiffness, the amplitude of stick-
slip cycles approaches zero. The transition is continuous at
all velocities tested in our study.

We also use numerical integration to explore the dynam-
ics of stick-slip. We do not observe complex stick-slip cycles
for the homogeneous case. We find that localization produces
irregular stick-slip cycles in certain regions of parameter
space. Simultaneous observations of irregular stick-slip and
the internal effective temperature dynamics establish a con-
nection between the small scale physics and exotic macro-
scopic dynamics.

Multiple period stick-slip occurs for the lowest driving
rates in our study, as shown in Fig. 5. This is a closer look at
the gray box at the far left of Fig. 4, just below the localized
transition from steady sliding to stick-slip. We see that there
are many types of motion that occur in this small part of
parameter space, including steady sliding, single period
stick-slip, double period stick-slip, many ��2� period stick-
slip, and material failure. Material failure refers to the fact
that the strain rate becomes so large that the effective tem-
perature diverges. Deformation in the amorphous material no
longer occurs in isolated STZs at these large strain rates, and
instead the deformation is more fluid-like. In the laboratory,
stick-slip cycles are still likely to occur in this regime, but
would require additional physics not included in STZ theory
to be accurately captured theoretically.

We look at two specific examples of the irregular slider
dynamics, one example that exhibits two period stick-slip
�the “+” in Fig. 5�, and one example that exhibits many
irregular stick-slip cycles �the “x” in Fig. 5�. Figure 6�a�
shows shear stress as a function of load point displacement
for stick-slip cycles with a doubled period. This stick-slip
motion occurs for localized deformation with V0=10−10 and
k=1100. The motion consists of a pair of alternating large
and small events. The shear stress builds up to the same level
during the “stick” phase of motion in both events, but the
sticking time between slips alternates between two values.
The slider slips much further during the big event, which
relaxes the spring and drops the stress to a lower level, re-
sulting in a longer sticking time following the large event
compared to the sticking time after the small event. Figure
6�b� shows the slider velocity as a function of load point
displacement. The large events result in a block velocity that
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(analytical)
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FIG. 4. �Color online� Comparison of analytical and numerical investigations of stick-slip. The plot shows the critical stiffness as a
function of driving rate for the analytic expressions for homogeneous deformation and localized deformation �Eqs. �11� and �15�, respec-
tively� and the results obtained through numerical integration of the STZ equations. If the stiffness and driving rate are above the curve, then
steady sliding is stable. If the values of the stiffness and driving rate are below the curve, motion occurs through stick-slip cycles. The
analytical result for homogeneous shear matches extremely well with the numerical results. The prediction for localized deformation
provides a good approximation of the shape of the boundary between stick-slip and steady sliding. The small discrepancy is due to the
difficulty of estimating the shear band width a, as well as the fact that the strain rate is not constant in the shear band. The gray box indicates
the region of parameter space where localized deformation produces multiple period stick-slips. This region is examined in detail in Fig. 5.
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is several orders of magnitude larger than in the small event.
The slider moves slightly faster prior to the large event.
However, the slider velocity is nearly an order of magnitude
below the driving velocity during the “stick” phases prior to
both events.

The slider slips more in the large event due to differences
in the internal state of the material within the shear band—
the strain rate profile in the material is different during large
and small events. Both the slider velocity and the plastic
strain rate are larger during the large stick-slip events. Small
differences in the effective temperature have a large impact
on the slider dynamics. Figure 7 �far left� shows shear stress
as a function of load point displacement for a large and small
stick-slip event which alternate in a two period cycle. At a
series of four values of the shear stress, we plot the effective
temperature as a function of z position within the layer. Be-
cause the shear stress is equal, differences in the stick-slip
events must arise from differences in the internal dynamics
of the effective temperature.

Figure 7�a� shows the effective temperature at the stress
peaks. Prior to the large event, the effective temperature is
slightly elevated at the center of the material. Dynamic feed-
backs in the effective temperature evolution during slip am-
plify this difference. The slightly elevated effective tempera-
ture implies a higher density of STZs at the center of the
material. The strain rate is also larger, and so the material
dissipates more energy. Energy dissipation leads to faster
growth of the effective temperature, which produces the pro-
files in Fig. 7�b�. The differences is further amplified in Fig.
7�c�, and in Fig. 7�d� the difference between the effective
temperatures correspond to nearly a factor of 1000 increase
in the plastic strain rate. As the effective temperature grows,
the stress drops more rapidly during the large event due to

dynamic weakening. Because the stress drop is larger, the
block slides farther due to the decreased frictional resistance.

This mechanism leads to further period doublings as the
spring stiffness decreases, until the cycles are irregular. Fig-
ure 8�a� shows the shear stress as a function of load point
displacement for a series of irregular stick-slip events. This
block slider system is driven at V0=10−12 with a spring stiff-
ness of k=1700. The shear stress at which the slip cycle
begins is very similar for both smaller and larger events.
Figure 8�b� shows the evolution of stress and slider velocity
during the four stick-slip events in the gray box in Fig. 8�a�.
The slider velocity ranges over many orders of magnitude in
the slip events. There is variation in the block velocity during
the stick phase, though it is always well below the load point
velocity V0, shown by the horizontal line. The block velocity
during the stick phase is largest following a small event and
smallest after a large event. However, the slider velocity dur-
ing the stick phase is not completely indicative of the size of
the next event, as the slider velocity during the stick phase
takes on a range of values prior to both large and small slip
events.

Figures 8�a� also shows that there are groups of smaller
slip events followed by a larger slip event. The groups often
have three or four stick-slip events, with several small events
followed by a large event. Consecutive larger events can also
occur, as can be seen around a load point displacement of 0.3
in Fig. 8�a�. The consecutive large events exhibit a smaller
stress drop than the large events in the set of three or four
events.

The small scale physics of strain localization leads to the
various sizes of slip events due to the same mechanism de-
scribed above for the double period stick-slip cycles. The
effective temperature is largest in the center of the material
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FIG. 5. �Color online� Diagram of parameter space where multiple period stick-slips do occur. This is a close up of the gray box at the
far left of Fig. 4, just below the transition from steady sliding to stick-slip for localized deformation. In this smaller region of parameter
space, many types of motion occur, including steady sliding, single period stick-slip, double period stick-slip, many ��2� period stick-slip,
and material failure. All of the curves are plotted for localized deformation, as multiple period stick-slips does not occur for homogeneous
shear. Material failure means that strain rates during the slip cycles are so large that STZ theory breaks down. A laboratory slider would
likely still exhibits stick-slip motion in this part of parameter space, but additional physics would have to be added to STZ theory to model
the motion theoretically. The circles indicate the specific values of k at fixed V0 where we observe a transition from one type of stick-slip
motion to another. The + at V0=10−10 indicates the specific example of double period stick-slip that we examine in Figs. 6 and 7, and the
x at V0=10−12 indicates the specific example of many period stick-slip that we examine in Fig. 8.
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prior to the largest events, and then dynamic feedbacks cause
the effective temperature to grow more rapidly, similar to the
plots in Fig. 7. The transitions to complex, chaotic behavior
in our model arise from variations in the internal state of the
material rather than instabilities associated with three �or
more� macroscopic phenomenological degrees of freedom in
a dynamic system, providing physical insight into the mecha-
nisms that give rise to exotic friction behavior.

IV. DISCUSSION

Our study shows that strain localization plays an impor-
tant role in stick-slip instabilities in amorphous materials.

The critical spring stiffness is larger for localized deforma-
tion than for homogeneous deformation and our analytic ex-
pressions for the critical stiffness are in good agreement with
numerical integration. The primary effect that increases the
critical stiffness for localized strain is an increase in the
strain rate in the shear band. Diffusion also plays a role by
mitigating the increase in the critical stiffness, though the
increased strain rate is the dominant effect in determining the
stability of steady sliding. Our analysis shows that the local-
ization effect cannot be replicated in a homogeneous model
by simply reducing the thickness of the material, and that
resolving the microscopic dynamics is important for captur-
ing the large scale friction.

Other constitutive laws such as Dieterich-Ruina also pre-
dict stick-slip motion �12�. In the Dieterich-Ruina law, the
critical stiffness is independent of the driving rate, while in
STZ theory the stiffness decreases with increasing driving
rate. This general trend is in agreement with laboratory ex-
periments �33�, and previous studies with STZ theory that
did not resolve the dynamic strain localization instability
�15�.

We also find that localized stick-slip can occur in irregular
cycles. The effective temperature profile immediately before
large and small events is slightly different, and this change in
the microscopic physical state leads to macroscopically dif-
ferent friction dynamics. Phenomenological constitutive laws
find that stick-slip can occur with irregular periods, though
this requires additional state variables to provide the degrees
of freedom necessary for chaotic stick-slip �13�. Our model
instead relates irregular stick-slip to the internal physics of
localization.

Many experiments show irregular stick-slip �1,8,34�. The
exotic phenomena could arise from many different sources of
complexity such as additional time scales associated with the
apparatus and/or complex molecules in the interfacial layer
which have their own internal dynamics or entanglements.
Our study shows that even for simple interfacial materials,
the small scale physics of strain localization can also be a
source of complexity. Experiments on simpler amorphous
materials that can simultaneously examine the dynamics of
strain localization �e.g., experiments that can image particle
displacements� could examine the region in parameter space
where we observe irregular stick-slip to test the connection
STZ theory makes between the microscopic physics and the
microscopic dynamics.

Our model assumes that the effective temperature is only
a function of position across the layer thickness. This sim-
plifies the modeling, but experiments show that amorphous
materials are heterogeneous in other spatial directions �35�.
Extending slider models to additional dimensions may be
important for fully capturing the complex stick-slip dynam-
ics seen in various experiments.

Molecular dynamics simulations of amorphous materials
show that stick-slip motion often occurs due to a phase tran-
sition from a solid to a fluid in the material �16�. This behav-
ior is also observed in experiments �5�. The STZ model does
not include the physics of this transition—melting occurs at
the strain rate where the effective temperature diverges, but
STZ theory does not include a constitutive description of the
material once it melts. At these high strain rates, plastic de-
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FIG. 6. �Color online� Two period stick-slip, with V0=10−10 and
k=1100. This point in the parameter space is shown by a + in Fig.
5. �a� Shear stress as a function of load point displacement. Instead
of a single stick-slip event, there are two different stress drop sizes.
The stress builds up to the same level to initiate failure in both
event sizes, but the recurrence time differs between the events. The
block slips more in the large event due to the microscopic effects of
localization. �b� Stress and slider velocity evolution during two pe-
riod stick-slips. The slider velocity is several orders of magnitude
larger in the large stick-slip event. The velocity evolution during the
stick phase leading up to failure is very similar in the large and
small events. The stick-slip events have different sizes because of
the internal effective temperature profile, which we examine in de-
tail in Fig. 7.
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formation no longer occurs in isolated STZs, and the mate-
rial instead flows like a fluid. Future modeling efforts that
incorporate this melting transition can determine its effects
on stick-slip for comparison with simulations and experi-
ments.

Experiments could determine the thickness of shear bands
during stick-slip motion to test our quantitative predictions
for the effect of localization. In thin films, the material is
often only a few molecules thick �34�. So, for these systems,
localization may not be important as the shear band thickness
may be wider than the entier material. In thicker materials
such as granular materials, this effect is more likely to be
important. Daniels and Hayman �1� observed stick-slip
events in a granular material and imaged particle displace-
ments before and after the event. They found that slip oc-
curred only over a few particle diameters in the layer for
some of the stick-slip events. Experiments on granular ma-
terials where grains can be imaged, or experiments with fault
gouge that examine gouge microstructures following the ex-
periment �4� can determine the shear band thickness. Such
experiments could potentially test our predictions for the ef-
fect of shear bands on stick-slip instabilities.

Our model for stick-slip does not include inertial effects.
We assume that the frictional time scale dominates stick-slip
motion and that oscillations of the spring/mass system occur
much faster than the inverse plastic strain rate time scale.
Inertial effects are important in some regimes �17� and can
be included in the block slider equations for numerical stud-

ies. However, these dynamical systems involve additional
variables and analytical studies are consequently much more
difficult. Stick-slip motion may require that the inverse plas-
tic strain rate, mass/spring oscillation time, and stress equili-
bration time all be similar. This requires substantially more
complicated modeling to resolve stress equilibration and
wave propagation through the amorphous material. Addition
of a mass resulted in chaotic motion with Dieterich-Ruina
friction �36�, so inertial dynamics could produce interesting
dynamic phenomena in the STZ model.

Stick-slip instabilities are an important aspect of friction
that must be understood to better constrain the dynamics of
interfaces. Our results show that strain localization plays an
important role in the macroscopic dynamics. Increasing the
resolution of other relevant small scale phenomena in models
of macroscopic dynamics should ultimately improve our
ability to predict the deformation and failure in amorphous
materials.
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FIG. 7. �Color online� Close up of the effective temperature shear band in large and small stick-slip events. The far left plot shows the
shear stress as a function of load point displacement for a large and a small stick-slip event. At four different values of the stress, shown by
the dots on the two different curves, we plot the effective temperature profile across the layer �z direction�. Because the stress is identical for
the pair of curves in each of the four plots, the only difference between the block sliders is the effective temperature profile—the physical
internal state of the sheared material is responsible for any differences in the dynamics. �a� At the peak stress prior to the slip event, the
effective temperature profile is slightly different—the shear band is narrower and the effective temperature is larger in the center prior to the
large event. �b� Because of feedbacks in the effective temperature dynamics, this difference is amplified, and the elevated effective
temperature in the center point grows faster during the large event. This further increases the effective temperature at the center as the plots
in �c� and �d� illustrate. Because the effective temperature is larger during the small event, the strain rate is larger and the shear stress drops
to a lower value due to dynamic weakening. This is why the shear stress in the large event drops nearly twice as much as in the small event.
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APPENDIX A: FULL DERIVATION OF THE
STZ EQUATIONS

STZ theory relates the plastic strain rate �̇ to the the shear
stress � and the effective temperature � �29�. The shear stress
quantifies the rate at which STZs switch orientations and the
effective temperature determines the total number of STZs in
the material. Here, we present the details of the assumptions
of the theory and derive the STZ equation used in this paper
�Eq. �1��.

In STZ theory, plastic strain occurs in localized soft spots
that are susceptible to rearrangement under applied shear

stress. These regions, called STZs, switch between two meta-
stable orientations, denoted “positive” and “negative.” In the
model, an STZ changing from positive to negative accumu-
lates a positive fixed strain increment, and an STZ changing
from negative to positive accumulates a negative fixed strain
increment. An STZ undergoing a switch from positive to
negative is shown in Fig. 1 �rightmost figure�. An STZ in the
negative orientation cannot shear further at that location, and
to sustain plastic flow STZs are constantly created and de-
stroyed as energy is dissipated in the material.

Quantitatively, the basic premise of STZ theory can be
written as follows:

�̇ =
2�

nt0
�R�+ ��n+ − R�− ��n−� . �A1�

The plastic strain rate �̇ is found from the number of STZs in
each orientation, n+ and n−, and the rate at which STZs
change orientation. The rate switching function R��� de-
scribes the rate at which STZ reversals take place in response
to the applied shear stress. The other parameters are the
strain increment per STZ reversal �, a reference STZ popu-
lation n, and the time scale for STZ reversals t0.

Equation �A1� is usually rewritten with the following
change in variables:

� =
n+ + n−

n

, m =
n− − n+

n+ + n−
. �A2�

The variable � is proportional to the total number of STZs
and m quantifies the bias. After performing this change in
variables, Eq. �A1� becomes

�̇ =
2�

t0
C�����T��� − m� . �A3�

The constitutive law is written here with two functions of the
rate switching function C���= �R���+R�−��� /2 and T���
= �R���−R�−��� / �R���+R�−���.

We assume an exponential form for R��� �37�

R��� = exp�− f0 + �/
d� . �A4�

The rate switching function depends on an activation stress

d and an activation energy scaled by the energy required to
form an STZ. This form for R��� is used in other formula-
tions of STZ theory �15,38� and reproduces the logarithmic
rate dependence of the Dieterich-Ruina law �21�. The rate
switching function combinations are then C���=exp�
−f0�cosh�� /
d� and T���=tanh�� /
d�. For the parameters in
our study, ��
d. Under this approximation, we set T���
�1.

The STZ populations dynamically evolve as STZs switch
between orientations and energy dissipation creates and de-
stroys STZs. The evolution equations that we adopt for the
STZ populations are
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FIG. 8. �Color online� Irregular stick-slip events due to strain
localization, with V0=10−12 and k=1700. This point in parameter
space is shown by an x in Fig. 4. �a� Shear stress as a function of
load point displacement. Stress drops of many sizes occur, with
irregular recurrence times. The peak stress is similar for all events,
though there are some small variations. Events usually occur in
groups of two or three small events followed by a large event, but
there can also be several consecutive larger events. �b� Stress and
slider velocity evolution during complex stick-slip cycles. The plot
shows the four stick-slip cycles in the gray box in �a�. The inner-
most loop is the first small stick-slip and the subsequent events are
progressively larger. The vertical line indicates the load point ve-
locity V0. The block velocity during sliding varies over many orders
of magnitude. During the stick phase, there is variation in the ve-
locity of the block. Small events are followed by increased block
velocity during the stick phase, while the slider velocity is lower
after large events. However, the slider velocity prior to a slip event
does not determine its size.
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dn	

dt
=

1

t0
�R����n� − R�	��n	�

+
�̇�

��n+ + n−��y
	n

2
exp�− 1/�� − n	
 . �A5�

The first term accounts for STZs switching between the two
possible orientations and the second term incorporates STZ
creation and annihilation. The overall creation/annihilation
rate is proportional to the rate at which energy is dissipated
in the material. Energy dissipation in the material drives the
STZ population toward a Boltzmann distribution, and the
stress �y determines the fraction of dissipated energy that
creates STZs. The stress �y also turns out to be the yield
stress, the stress below which the material is jammed.

In the � and m variables, the evolution equations are

d�

dt
=

�̇�

n��y
�exp�− 1/�� − �� , �A6�

dm

dt
=

�̇

�n�
1 −

�m

�y
�1 + exp�− 1/�� − ��� . �A7�

Note that both the � and m equations are inversely propor-
tional to the number of STZs n�. STZ theory postulates
that STZs occur in local, isolated regions. Therefore, because
the number of STZs is small, the factor 1 / �n�� is large, and
the STZ populations evolve much faster than the stress and
effective temperature. With this in mind, we assume the total
number of STZs is always at its steady-state value �=exp�
−1 /��, which is set by the local effective temperature.

If we set the total number of STZs to steady state, then the
STZ bias is m=�y /�. The STZ bias cannot exceed m=1,
which corresponds to all the STZs in the negative orienta-
tion. When this occurs, the material is jammed ��̇=0� and
cannot be sheared further because there are no regions sus-
ceptible to deformation. If ���y, then the material flows.
Therefore, the steady-state value for the STZ bias is depen-
dent on the shear stress as follows:

m = 1, � � �y

�y/� , � � �y .
� �A8�

The STZ dynamics determine if the material is jammed or
flowing, but otherwise the stress and effective temperature
have the dominant effect on the friction dynamics.

If we set the STZ populations to their steady-state values,
then we have the exact form for Eq. �1�,

�̇ =
2�

t0
exp�− f0�cosh��/
d�exp�− 1/��	1 −

�y

�

 , �A9�

unless ���y, in which case �̇=0. The strain rate depends on
the shear stress and the internal physics of the material is
described by the effective temperature. We discuss the dy-
namic equation for the effective temperature in Sec. II A in
the main text.

APPENDIX B: LINEAR STABILITY ANALYSIS FOR THE
STZ EQUATIONS

1. Homogeneous deformation

First, we perform the stability analysis with the assump-
tion that the effective temperature is spatially homogeneous.
In this case, the diffusion term in the effective temperature
equation is zero and the spatial integral in Eq. �7� is �exp�
−1 /��dz=exp�−1 /��. The dynamical system for homoge-
neous deformation is

�̇ = k�V0 − f���exp�− 1/��� , �B1�

�̇ =
f���exp�− 1/���

c0
	1 −

�

�̂��̇�
 . �B2�

The Jacobian of the STZ equations for homogeneous defor-
mation is

J11 =
� �̇

��
= − kf����exp�− 1/�� , �B3�

J12 =
� �̇

��
= −

kf���exp�− 1/��
�2 , �B4�

J21 =
��̇

��
=

�f����� + f����exp�− 1/��
c0

�1 −
�

�̂
�

+
f���exp�− 1/���

c0

�

�̂2

��̂

��
, �B5�

J22 =
��̇

��
=

f���exp�− 1/���
c0�2 �1 −

�

�̂
�

+
f���exp�− 1/���

c0
� �

�̂2

��̂

��
−

1

�̂
� . �B6�

The maximum effective temperature is a function of the
strain rate, which means that �̂ depends on both the stress
and the effective temperature. When evaluated at steady state
�V0= f���exp�−1 /�� and �= �̂�, this becomes

J11 =
� �̇

��
= −

kf����V0

f���
, �B7�

J12 =
� �̇

��
= −

kV0

�2 , �B8�

J21 =
��̇

��
=

V0��̂

c0�w

f����
f���

, �B9�

J22 =
��̇

��
=

V0�

c0�̂
� 1

�w
− 1� , �B10�

since the derivatives of �̂ with respect to stress and effective
temperature are

��̂

��
=

�̂2

�w

f����
f���

, �B11�
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��̂

��
=

�̂2

�2

1

�w
. �B12�

The real part of the eigenvalues is the trace of the Jacobian,
as near the transition from stable sliding to unstable sliding,
the eigenvalues are complex. Steady sliding is unstable if the
trace of the Jacobian is greater than zero,

Tr�J� =
� �̇

��
+

��̇

��
= −

kV0f����
f���

+
V0�

c0�̂
� 1

�w
− 1� � 0.

�B13�

Equation �9� reveals that stability is determined by two com-
peting effects. The first term in Eq. �B13� comes from the
spring force. This term is always negative, as the spring force
is always a restoring force that pushes the block toward equi-
librium. The second term in Eq. �9� comes from the energy
dissipation term in the effective temperature evolution equa-
tion. This term is destabilizing only if �w�1 �i.e., for rate
weakening parameters�.

2. Localized deformation

We now determine the role of localization by performing
a linear stability analysis on the full STZ equations �Eqs. �7�
and �8��. This involves the same steps as the homogeneous
case, but with the inclusion of the diffusion term in Eq. �8�
and the spatial integral in Eq. �7�. We study how perturba-
tions to a steady shear band solution to the effective tempera-
ture equations grow in time. To simplify the analysis, we
assume that the perturbations to the effective temperature are
not a function of z. Spatially varying perturbations can be
considered through an analysis of normal modes. However, it
turns out that the zero wavenumber mode is the least stable
�the diffusion term in Eq. �8� results in the higher wavenum-
ber modes being more stable�, so nothing extra is gained
with a perturbation that varies with z.

For localized deformation, the Jacobian of the system is

J11 =
� �̇

��
= − kf�����

0

1

exp�− 1/��dz , �B14�

J12 =
� �̇

��
= − kf����

0

1 exp�− 1/��
�2 dz , �B15�

J21 =
��̇

��
=

�f����� + f����exp�− 1/��
c0

�1 −
�

�̂
�

+
f���exp�− 1/���

c0

�

�̂2

��̂

��
+ Df����

�

�z
	exp�− 1/��

��

�z

 ,

�B16�

J22 =
��̇

��
=

f���exp�− 1/���
c0�2 �1 −

�

�̂
�

+
f���exp�− 1/���

c0
� �

�̂2

��̂

��
−

1

�̂
�

+ Df���
�

��
 �

�z
	exp�− 1/��

��

�z

� . �B17�

Perturbations to the effective temperature are independent of
z, so the � derivative in the diffusion term in J22 only acts on
the exp�−1 /�� factor,

�

��
 �

�z
	exp�− 1/��

��

�z

� , �B18�

=
�

�z
	 exp�− 1/��

�2

��

�z

 , �B19�

=
1

�2

�

�z
	exp�− 1/��

��

�z

 −

2 exp�− 1/��
�3 � ��

�z
�2

.

�B20�

When evaluated at steady state, where V0= f����exp�
−1 /��dz and the diffusion and energy dissipation terms bal-
ance, the Jacobian becomes:

J11 =
� �̇

��
= −

kf����V0

f���
, �B21�

J12 =
� �̇

��
= − kf����

0

1 exp�− 1/��
�2 dz , �B22�

J21 =
��̇

��
=

f���exp�− 1/��
c0

�1 −
�

�̂
� +

f���exp�− 1/����̂

c0�w

f����
f���

,

�B23�

J22 =
��̇

��
=

f���exp�− 1/���
c0�̂

� 1

�w
− 1�

−
2Df���exp�− 1/��

�3 � ��

�z
�2

. �B24�

As with homogeneous deformation, the eigenvalues turn out
to be complex at steady state. The real part of the eigenval-
ues is the trace of the Jacobian. Therefore, if the trace of the
Jacobian is greater than zero, steady sliding is unstable:

Tr�J� =
� �̇

��
+

��̇

��
= −

kV0f����
f���

+
�̇�

c0�̂
� 1

�w
− 1�

− 2D
�̇

�3� ��

�z
�2

� 0. �B25�

There are two important differences between this expression
and the equivalent expression for homogeneous deformation
�Eq. �B13��. First is the presence of the diffusion term, which
is negative and therefore stabilizes the growth of perturba-
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tions. The other important difference is that the energy dis-
sipation term �the second term in Eq. �B25�� depends on the
strain rate rather than the average strain rate. This term is
much larger when a shear band forms due to the elevated

strain rate in the shear band. Ultimately this implies that
stick-slip motion occurs for a larger spring stiffness when a
shear bands forms.
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